
Sensitivity-Aware Bit Allocation for Intermediate
Deep Feature Compression
Yuzhang Hu, Sifeng Xia, Wenhan Yang and Jiaying Liu∗
Wangxuan Institute of Computer Technology, Peking University

Abstract—In this paper, we focus on compressing and trans-
mitting deep intermediate features to support the prosperous
applications at the cloud side efficiently, and propose a sensitivity-
aware bit allocation algorithm for the deep intermediate feature
compression. Considering that different channels’ contributions
to the final inference result of the deep learning model might
differ a lot, we design a channel-wise bit allocation mechanism
to maintain the accuracy while trying to reduce the bit-rate
cost. The algorithm consists of two passes. In the first pass,
only one channel is exposed to compression degradation while
other channels are kept as the original ones in order to test
this channel’s sensitivity to the compression degradation. This
process will be repeated until all channels’ sensitivity is obtained.
Then, in the second pass, bits allocated to each channel will be
automatically decided according to the sensitivity obtained in the
first pass to make sure that the channel with higher sensitivity
can be allocated with more bits to maintain accuracy as much as
possible. With the well-designed algorithm, our method surpasses
state-of-the-art compression tools with on average 6.4% BD-rate
saving.

Index Terms—intermediate feature compression, bit allocation,
video coding, sensitivity measurement, deep learning

I. INTRODUCTION

With the prosperous development of deep learning, it has
shown excellent capacities in almost every computer vision
fields, including image classification [1], object detection [2],
image restoration [3]. The efficiency of deep learning has
been universally admitted while there remain some defects
during its more extensive application. Due to the tremendous
demand for computing resources, the neural networks are
always powered by GPUs on the cloud with the original
images captured by the user end and transmitted through
the network. As a result, there comes some issues. First,
transmitting original images might result in the disclosure
of private information as the cloud end might frequently be
attacked by hackers. Besides, with the explosive growth of
image and video data, it brings great computation pressure on
the cloud side and the service latency would thus rise to a
high level.

Intermediate feature compression can bring a new solution
to the above problems. Neural networks consist of consec-
utively connected layers. Each of these layers stands for a
specific kind of computation, which will be performed in
turn and the order is consistent with the sequence of layers.

∗Corresponding Author. This work was supported by National Natural
Science Foundation of China under contract No.61772043, and Beijing
Natural Science Foundation under contract No. 4192025 and No.L182002.

After the computation of a layer, its corresponding feature is
obtained and can be viewed as the input of subsequent network
layers. By compressing and transmitting the intermediate
layer’s feature (intermediate feature), the above issues can be
addressed to a certain extent. First, the computation before the
current intermediate feature can be done at the user end, which
reduces the burden of the cloud end. Besides, some private
information can be hidden via encoding the images/videos
into features while still keep the normal working of the
neural network. What is more, the compressed feature can
be reused for different tasks and the computation before
the current intermediate feature is only performed once to
save the computational cost. Therefore, intermediate feature
compression is of high application value.

In [4], Chen et al. make the first attempt to formulate a
pipeline for both lossless and lossy feature compression. Tak-
ing storage and transmitting costs into consideration, lossy fea-
ture compression is more feasible. The to-be-compressed fea-
ture will be first quantized from float data to integer data. Then,
considering that feature is 3-D data, which shows similarity
to video data, traditional video codecs like High Efficiency
Video Coding (HEVC) [5] are then used to compress the
quantized feature. However, different from video compression,
the reference result obtained based on the reconstructed feature
measures the quality of the compression algorithm for interme-
diate feature compression. Take the image classification task
as an example, if the degradation caused by the compression
process on the reconstructed feature makes the classification
result change to another category, this compression algorithm
is not a good one. In [4], each channel of the to-be-compressed
feature is viewed as a frame and all channels are set with
the same quantization parameter (QP), which means there is
no difference between the bits allocated for each channel.
Unfortunately, it shows larger information divergence among
channels compared to the one between video frames. That
is, some channel plays a critical role in the final calculation
of the neural network while others show a smooth pattern
and contribute little to the subsequent computation. Lossy
compression will result in loss of information which can be
reduced by more allocated bits. If all channels are set to the
same QPs, the bits allocated to the unimportant channels are
a waste while the bits allocated to the critical channels are
limited. This imbalance will lead to greater deviation in the
subsequent calculation with the reconstructed feature.

In the traditional video codecs, bit allocation is an important
tool to improve the quality of the reconstructed video while978-1-7281-8068-7/20/$31.00 ©2020 IEEE

Shallow
Layer

Bit Allocation

Compressed Code

Sensitivity
Measurement

Original Image
Original Feature

Quantization

Deep
Layer

Original Feature

Channel-Wise Noisy Feature

Sensitivity Detection

Coding
Noise

Degraded Output

Lossless Output

Video Codecs

Sensitivity

Sensitivity

S1
S2
S3

Fig. 1. Pipeline of the Sensitivity-Aware Bit Allocation for intermediate deep feature compression. For simplicity, the to-be-compressed feature consists of 3
channels. During the sensitivity measurement, the blue channel is degraded with the compression noise while others with yellow color are kept as the original
ones. All channels will be processed as described above to obtain the channel-wise noisy features, which will be fed to deeper layers to calculate the degraded
output of the neural network. The mean squared error between the lossless and degraded output is regarded as the sensitivity. Finally, bit allocation between
all channels will be done based on the evaluated sensitivity to compress the feature with video codecs.

keep the total bits at a low level. Frames are divided into
key/non-key frames. The former will be allocated with more
bits and therefore have better reconstructed quality, which
makes it serve as a better reference for the compression on
the non-key frames. In this way, the overall reconstructed
quality is improved while keeping the extra bits at a low level.
Motivated by the bit allocation method in traditional video
codecs, we design a sensitivity-aware bit allocation method for
intermediate feature compression as shown in Fig. 1, which
consists of the process of sensitivity measurement and bit
allocation. Specifically, we define and evaluate each channel’s
sensitivity to the compression noise and perform bit allocation
based on each channel’s sensitivity to allocate more bits to
the channels which are critical to the final reference result.
We evaluate the proposed feature compression algorithm on
two tasks, i.e. image classification and semantic segmentation,
to show the superiority of the sensitivity-aware bit allocation
method for intermediate feature compression.

II. SENSITIVITY-AWARE BIT ALLOCATION FOR
INTERMEDIATE FEATURE COMPRESSION

A. Problem Formulation of Bit Allocation for Feature Com-
pression

Due to the information loss caused by lossy compression,
there might be a deviation for the final inference result
based on the reconstructed feature. More bits can reduce this
information loss and make the inference result more accurate.
In other words, to improve inference accuracy as much as
possible with the smallest extra bits is the goal of bit allocation
for feature compressing. Let θ denote the bit allocation strategy
for feature X , then the reconstructed feature denoted as X

′

can be obtained as follows:

X
′
= V (X, θ), (1)

where V stands for the video codecs. The optimal bit alloca-
tion strategy can be represented as follows:

argmin
θ

(L(X
′
) + λB(X, θ)), (2)

where L is the metric to measure the inference accuracy drop
with the reconstructed feature X

′
, B is the total bits of the

compressed result, and λ defines the weights between these
two items.

B. Sensitivity Measurement

Reconstructed data with lossy compression is different from
the original one due to some lossy operations like quantization.
We regard this kind of information loss as the compression
noise applied to the original data. For the to-be-compressed
feature, each channel might show the unique characteristic to
the compression noise. For some channels, slight compression
noise would lead to great deviation of the final inference result
but others just show the opposite property. We regard this
property as each channel’s sensitivity to the compression noise
and evaluate it before the bit allocation step.

For the intermediate layer’s feature X of a neural network
like VGG [1] or ResNet [6], the sensitivity measurement
process will be done as follows. First, the original feature X
which has C channels will be fed to the subsequent layers
to calculate the lossless output outraw. Next, there will be
totally C iterations. At the i-th iteration, the i-th channel will
be compressed alone while others are kept as original. We
regard this feature as the i-th channel-wise noisy feature and
will be fed to the subsequent layers to get the degraded output
out(i). The Mean Squared Error (MSE) between outraw and
out(i) will be regarded as the i-th channel’s sensitivity to the
compression noise.

Algorithm 1 Bit Allocation for Feature Compression
Input: Original Feature X ∈ RC×H×W ,

Base QP QP base, Bit Allocation Magnitude QP range,
Subsequent Layers Net, Video Codecs V ,
Quantization Function Q,
Dequantization Function DQ

Output: Compressed feature X̃

1: outraw ← Net(X)
2: for each channel xi of X, do
3: x̃i ← DQ(V (Q(xi), QP base))
4: // xi ∈ R1×H×W

5: X ← copy(X)
6: i-th channel of X ← x̃i
7: out(i) ← Net(X)
8: Si ← MSE (out(i), outraw)
9: // All channels’ sensitivity S ∈ RC

10: S̃ ← S−min(S)
max(S)−min(S)

11: QP ← QP base − round(QP range · S̃)
12: // QP ∈ QC stands for the quality parameter for
13: // each channel during compression
14: X̃ ← V (Q(X),QP)
15: return X̃

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0 8 16 24 32 40 48 56

Se
ns

iti
vi

ty

Channel index
(a) Raw sensitivity

0

0.2

0.4

0.6

0.8

1

0 8 16 24 32 40 48 56

Se
ns

iti
vi

ty

Channel index
(b) Relative sensitivity

Fig. 2. Visulization of the sensitivity.

C. Bit Allocation

After the sensitivity measurement, all channels’ sensitivity
to the compression noise S ∈ RC is obtained. As Fig. 2
(a) shows, there remains an unregular distribution in the raw
sensitivity. Specifically, the sensitivity gap between different
channels is huge, which makes it difficult to unify the bit
allocation among all channels. As a result, we propose to
normalize raw sensitivity as follows:

S̃ =
S−min(S)

max(S)−min(S)
. (3)

The normalized sensitivity is regarded as the relative sensitiv-
ity S̃ as shown in Fig. 2 (b) and the QP for each channel will be
decided according to S̃. The hyper parameter QP base will be
set as an approximate target rate level and QP range is used to
control the magnitude of bit allocation. Then the i-th channel’s
QP is set to QP base − round(QP range · S̃i). For the video
codecs, smaller QP means more bits and thus the channel
with higher sensitivity will suffer from less information loss
caused by lossy compression. Finally, the quantized feature

will be compressed by video codecs with QP calculated for
each channel. The detailed algorithm is shown in Algorithm
1.

III. EXPERIMENT

A. Experiment Setting

We choose HM-16.12 as the video codecs and compress
the quantized feature under the all intra coding configuration.
During the compression process, each quantized channel is
regarded as a grey frame so the color space for video codecs
is set to 400.

VGG [1] and ResNet [6] are two most widely used neural
networks and we compress the feature of their first 2 shallow
layers which are named following [4] with the proposed
method. We test the tasks of image classification on VGG16
and semantic segmentation on ResNet50 as shown in Table I.

TABLE I
TESTED LAYERS OF VGG AND RESNET

Task Image Classification Semantic Segmentation

Backbone VGG16 ResNet50

Layer Conv1/Pool1 Conv1/Pool2

The most important metric to evaluate a feature compression
algorithm are the compression rate and fidelity. The compres-
sion rate stands for the ratio of bitstream size to uncompressed
feature size. The fidelity measures the inference deviation
caused by lossy compression. The compression method pro-
posed in [4] which sets the same QP for all channels under
all intra configuration is chosen as the anchor. For short, we
call it unified QP method.

More details will be described in the following section.

B. Implementation Details

We use the pretrained weights provided by PyTorch [7] to
initialize the neural network of the to-be-compressed feature.
In the sensitivity measurement step, the channel-wise noisy
feature will be fed to the subsequent layers except for the
final classifier to calculate the degraded output.

We choose VGG16 on the task of image classification. 1000
images of ImageNet [8] collected by Chen et al. [4] are used as
the testing dataset. Image classification is the image-level task
so we directly use the fidelity defined in [4] to measure the
inference deviation caused by lossy compression as follows:

fid(M,M̃) =

{
1, argmax(M) = argmax(M̃),

0, else,
(4)

where M and M̃ are the vectors obtained by the fully
connected classifier with original and reconstructed features
respectively.

We choose FCN [9] with the ResNet50 as the backbone
on the task of semantic segmentation on PASCAL 2007 [10].
Different from image classification, semantic segmentation is

0.84

0.86

0.88

0.9

0.92

0.94

0.009 0.014 0.019 0.024

Fi
de

lit
y

Compression rate

Anchor

Proposed

(a) VGG16 (Image Classification)

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.0055 0.0105 0.0155 0.0205 0.0255 0.0305

Fi
de

lit
y

Compression rate

Anchor

Proposed

(b) ResNet50 (Semantic Segmentation)

Fig. 3. The Rate-Fidelity Curve of layer Conv1 for VGG and ResNet.

a pixel-wise classification task. The fidelity of a reconstructed
feature is defined as the average fidelity of all pixels as follows:

fid(M, M̃) =
1

H ·W

H∑
x=1

W∑
y=1

fid(M(x, y), M̃(x, y)), (5)

where H and W are the height and width of the input image.
M(x, y) and M̃(x, y) are the classification vectors of the pixel
at the location (x, y) of the semantic maps obtained with
original and reconstructed features respectively.

For image classification task, the QP base parameters are set
to 36, 38, 40, 42. For image semantic segmentation task, we
find that the fidelity will drop severely for Conv1 with high
QPs so we set the QP base parameters to 14, 18, 22, 26 while
there is less impact with high QPs for Pool2 so the QP base
for this layer is set to 36, 38, 40, 42. The QP range parameter
is always fixed to 5.

TABLE II
RATE REDUCTION OF THE PROPOSED METHOD

Layer Image Classification Semantic Segmentation

Conv1 -6.3% -13.2%
Pool1 -3.2% -
Pool2 - -3.0%

C. Experiment Results

The overall performance is shown in Table II. By allocating
more bits to the channels which are more sensitive to the
compression noise, the inference deviation caused by lossy
compression can be suppressed with as less bits as possible.
The reconstructed feature obtained by the proposed method
can improve the accuracy of both image-level and pixel-level
tasks. Specifically, 13.2% bitstream can be saved for the layer
Conv1 of ReNet50 on the task of semantic segmentation.

The rate-fidelity curves of Conv1 layer of VGG16 and
ResNet50 are shown in Fig. 3. It can be observed that our
method shows better compression efficiency compared with
the unified QP method.

IV. CONCLUSION

In this paper, we explore the effect of the compression noise
on different feature channels and propose a sensitivity-aware

bit allocation algorithm for intermediate feature compression.
By simulating the inference deviation caused by lossy com-
pression in a channel-wise way, we evaluate the sensitivity
of each channel to the compression noise and allocate more
bits to the more sensitive ones. Owe to this design, the valid
information which plays an important role in the subsequent
calculation will suffer from less degradation and thus keep
the final inference result more accurate, i.e. consistent with
the original one while keeping the total storage cost as low as
possible.

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in Proceedings of the International
Conference on Learning Representations (ICLR), 2015.

[2] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
neural information processing systems, pp. 91–99, 2015.

[3] M. Li, J. Liu, X. Sun, and Z. Xiong, “Image/video restoration via
multiplanar autoregressive model and low-rank optimization,” ACM
Transactions on Multimedia Computing and Communications and and
Applications (TOMM), vol. 15, no. 4, pp. 1–23, 2019.

[4] Z. Chen, K. Fan, S. Wang, L. Duan, W. Lin, and A. C. Kot, “Toward
intelligent sensing: Intermediate deep feature compression,” IEEE Trans-
actions on Image Processing, vol. 29, pp. 2230–2243, 2020.

[5] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (HEVC) standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649–
1668, 2012.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the Computer Vision and Pattern
Recognition (CVPR), 2016.

[7] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, pp. 8024–8035, 2019.

[8] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei, “Imagenet large scale visual recognition challenge,” International
Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[9] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” IEEE Annals of the History of Computing,
no. 04, pp. 640–651, 2017.

[10] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results.” http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

